Mutacje to nagłe, skokowe zmiany w materiale genetycznym, które mają charakter losowy. U wirusów RNA ich najczęstszą przyczyną są pomyłki polimeraz, enzymów odpowiedzialnych za namnażanie materiału genetycznego. Jednak w przeciwieństwie do wirusów grypy, koronawirusowe polimerazy posiadają system kontroli błędów. Mylą się zatem wolniej. Choć wirusy RNA mutują bardzo szybko w porównaniu z innymi wirusami, tempo tego mutowania u SARS-CoV-2 jest wolniejsze niż pośród wirusów grypy – szacuje się, że o około połowę. Większość mutacji nie doprowadza do żadnych zmian w budowie białek i jest obojętna dla wirusa.
Niektóre z kolei wywołują zmiany niekorzystne, np. ograniczające możliwość zakażania komórek lub zmniejszające tempo replikacji – takie mutacje będą selekcjonowane negatywnie. Inne mutacje mogą natomiast być dla wirusa korzystne – podlegają wtenczas selekcji pozytywnej i będą się upowszechniać. Do mutacji SARS-CoV-2 tego ostatniego typu należała D614G, którą po raz pierwszy wykryto na przełomie stycznia i lutego 2020 r. Prowadziła ona do zmiany pojedynczej zmiany w określonym miejscu łańcucha aminokwasowego białka S – z kwasu asparaginowego (D) na glicynę (G). Mutacja ta zwiększyła możliwość zakażania komórek przez SARS-CoV-2 i w związku z czym bardzo szybko się upowszechniła.
Wariant i mutacja – co oznaczają te terminy?
Warianty to formy wirusa z określonym układem mutacji. Mutacje, jak i warianty je posiadające deponowane są w bazie GISAID. Liczba rozmaitych wariantów jest bardzo duża. Oznaczane są akronimami. I tak na przykład wariant tzw. brytyjski to B.1.1.7, a tzw. afrykański 501.V2. Mutacje i warianty identyfikuje się poprzez sekwencjonowanie całego genomu w wybranych próbkach wymazów i porównywanie wyników do tych obecnych już w bazach danych.
Szczepy – tak nazywa się formy danego wirusa, należące do tego samego gatunku, które posiada pewne unikalne cechy fenotypowe (takie jak unikalne właściwości antygenowe, zakres żywicieli lub objawy wywoływanej choroby), pozostające stabilne w warunkach naturalnych. Warianty wirusa z prostymi zmianami w materiale genetycznym nie są rozróżniane jako odrębne szczepy. Na chwilę obecną SARS-CoV-2 to jeden z dwóch szczepów gatunku betakoronawirusa, który nazywa się severe acute respiratory syndrome–related coronavirus. Drugim szczepem tego gatunku jest wirus SARS-CoV, który wywoływał chorobę SARS w latach 2002-2004 r. Dzięki badaniom molekularnym wiemy, że SARS-CoV-2 nie pochodzi od SARS-CoV – oba wirusa wywodzą się natomiast od wspólnego przodka.
Nowy koronawirus?
W związku z tym nie ma żadnego uzasadnienia, by wykrywane warianty SARS-CoV-2 nazywać mianem „nowego koronawirusa”. To wciąż ten sam wirus, tego samego szczepu, który występuje w różnych formach, które różnią się układem poszczególnych mutacji.
Wariant „brytyjski” (B.1.1.7, VOC-202012/01 lub 20B/501Y.V1) został zidentyfikowany w próbkach wymazów pobranych pierwszy raz we wrześniu 2020 r. Wyróżnia go 17 mutacji sensownych (oraz mutacja D614G), czyli prowadzących do zmiany aminokwasu w strukturze białek wirusa. Dziewięć takich zmian dotyczy białka S, krytycznego w mechanizmie zakażania komórki, a w związku z tym wykorzystywanego jako antygen szczepionkowy. Analizy epidemiologiczne wskazują, że wariant ten może być o 50 proc. bardziej transmisyjny, co wiąże się przede wszystkim z mutacją N501Y, która umożliwia bardziej ścisłe przyleganie białka S do receptora na powierzchni ludzkich komórek. Kwestia wymaga to jednak potwierdzenia na drodze eksperymentalnej. Obserwacje epidemiologiczne nie wskazują, by wariant ten był odpowiedzialny za cięższy przebieg choroby lub wyższą śmiertelność.
Wariant „afrykański” (501.V2) – wykryty pod koniec grudnia 2019 r. w Republice Południowej Afryki. Charakteryzuje się 20 mutacjami sensownymi (oraz mutacją D614G), w tym dziewięć z nich doprowadza do zmian sekwencji aminokwasowej w białku S.
Charakteryzuje się mutacją N501Y występującą u wariantu „brytyjskiego”. Podejrzewa się, że wariant ten może rozprzestrzeniać się szybciej. Nie ma danych wskazujących, by był odpowiedzialny za cięższy przebieg choroby lub wyższą śmiertelność.
Czy warianty takie jak „brytyjski” lub „afrykański” mogą znosić skuteczność opracowanych szczepionek?
Na chwilę obecną nie można udzielić jednoznacznej odpowiedzi. Trwają badania eksperymentalne, których wyniki będą znane w najbliższym czasie. Za tym, że warianty te nie będą ograniczać skuteczności szczepionek przemawia jednak szereg argumentów:
Antygenem szczepionkowym jest białko S koronawirusa, które łańcuch liczy ok. 1270 aminokwasów. Zmiany stwierdzone w wariancie B.1.1.7 i 501.V2 nie przekraczają 1 proc. całego łańcucha. Innymi słowy, są to zmiany drobne
Żadna ze zmian nie modyfikuje trzeciorzędowej struktury białka, co mogłoby mieć wpływ na wiązanie antygenu przez przeciwciała
Przeciwciała produkowane na skutek zaszczepienia mają zdolność wiązania różnych regionów białka S. Drobne zmiany w różnych jego regionach nie powinny znosić możliwości neutralizacji
Poza odpowiedzią humoralną, czyli związaną z produkcją przeciwciał, zaszczepienie prowadzi również do odpowiedzi komórkowej, na którą skumulowane mutacje w wariantach B.1.1.7 i 501.V2 mogą nie mieć żadnego wpływu
Badania przeprowadzone na surowicy osób zaszczepionych dwoma dawkami szczepionki Pfizer/BioNTech wskazują, że mutacja N501Y nie znosi jej skuteczności. Potrzebne są badania dla kolejnych mutacji stwierdzonych w wariancie B.1.1.7 i 501.V2.
Autor tekstu dr hab. Piotr Rzymski jest ekspertem w dziedzinie biologii medycznej i badań naukowych Uniwersytetu Medycznego im. Karola Marcinkowskiego w Poznaniu. Material powstał w ramach inicjatywy #Naukaprzeciwpandemii
Czytaj też:
Pandemia COVID-19 ma zły wpływ na twoje ciało? Sprawdź, jaką dietę powinieneś stosować